THDelft

Physics-based preconditioners for large-scale subsurface flow simulation.

Kees Vuik ${ }^{1}$, Gabriela B. Diaz Cortes ${ }^{1}$, Jan Dirk Jansen ${ }^{2}$.

${ }^{1}$ EWI
Delft University of Technology
${ }^{2} \mathrm{CiTG}$
Delft University of Technology

SPE 10

Single-phase flow, grid size $60 \times 220 \times 85$ grid cells.

Method	Number of iterations
ICCG	1011
DICCG	2

Table: Number of iterations for the SPE 10 benchmark (85 layers) for the ICCG and DICCG methods, tolerance of 10^{-7}.

Table of Contents

(1) Problem Definition
(2) DPCG
(3) Deflation Vectors
4. Lemmas
(5) Results

6 Conclusions
(7) Bibliography

Problem Definition

Reservoir Simulation

Single-phase flow through a porous media [1]
Darcy's law + mass balance equation

$$
\begin{gathered}
-\nabla \cdot\left[\frac{\alpha \rho}{\mu} \overrightarrow{\mathbf{k}}(\nabla \mathbf{p}-\rho g \nabla d)\right]+\alpha \rho \phi c_{t} \frac{\partial \mathbf{p}}{\partial t}-\alpha \rho \mathbf{q}=0 . \\
c_{t}=\left(c_{l}+c_{r}\right),
\end{gathered}
$$

g gravity
α a geometric factor
d depth
ϕ rock porosity
q sources
μ fluid viscosity
p pressure
$\overrightarrow{\mathbf{K}}$ rock permeability c_{r} rock compressibility c_{l} liquid compressibility

Problem Definition

Discretization

2D case, isotropic permeability, small rock and fluid compressibilities, uniform reservoir thickness and no gravity forces.

$$
-\frac{h}{\mu} \frac{\partial}{\partial x}\left(k \frac{\partial \mathbf{p}}{\partial x}\right)-\frac{h}{\mu} \frac{\partial}{\partial y}\left(k \frac{\partial \mathbf{p}}{\partial y}\right)-\frac{h}{\mu} \frac{\partial}{\partial z}\left(k \frac{\partial \mathbf{p}}{\partial z}\right)+h \phi_{0} c_{t} \frac{\partial \mathbf{p}}{\partial t}-h \mathbf{q}=0 .
$$

$$
\mathcal{V} \dot{\mathbf{p}}+\mathcal{T} \mathbf{p}=\mathbf{q}
$$

\mathbf{q} : sources or wells in the reservoir, Peaceman well model, $\mathcal{I}_{\text {well }}$ is the well index

$$
\mathbf{q}=-\mathcal{I}_{\text {well }}\left(\mathbf{p}-\mathbf{p}_{\text {well }}\right)
$$

Accumulation matrix
Transmissibility matrix

$$
\begin{aligned}
& \mathcal{V}=V c_{t} \phi_{0} \mathcal{I}, \\
& V=h \Delta x \Delta y \Delta z
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T}_{i-\frac{1}{2}, j, l} & =\frac{\Delta y}{\Delta x \Delta z} \frac{h}{\mu} k_{i-\frac{1}{2}, j, l}, \\
k_{i-\frac{1}{2}, j} & =\frac{2}{\frac{1}{k_{i-1, j, l}}+\frac{1}{k_{i, j, l}}} .
\end{aligned}
$$

Problem Definition

Incompressible model

$$
\mathcal{T} \mathbf{p}=\mathbf{q} .
$$

Compressible model

$$
\mathcal{V}^{n+1} \frac{\left(\mathbf{p}^{n+1}-\mathbf{p}^{n}\right)}{\Delta t^{n}}+\mathcal{T}^{n+1} \mathbf{p}^{n+1}=\mathbf{q}^{n+1}
$$

Or:

$$
\begin{equation*}
\mathcal{F}\left(\mathbf{p}^{n+1} ; \mathbf{p}^{n}\right)=0 . \tag{1}
\end{equation*}
$$

Newton-Raphson

Using Newton-Raphson (NR) method, the system for the $(k+1)$-th NR iteration is:

$$
\mathcal{J}\left(\mathbf{p}^{k}\right) \delta \mathbf{p}^{k+1}=-\mathcal{F}\left(\mathbf{p}^{k} ; \mathbf{p}^{n}\right), \quad \mathbf{p}^{k+1}=\mathbf{p}^{k}+\delta \mathbf{p}^{k+1}
$$

where $\mathcal{J}\left(\mathbf{p}^{k}\right)=\frac{\partial \mathcal{F}\left(\mathbf{p}^{k} ; \mathbf{p}^{n}\right)}{\partial \mathbf{p}^{k}}$ is the Jacobian matrix, and $\delta \mathbf{p}^{k+1}$ is the NR update at iteration step $k+1$.

$$
\begin{equation*}
\mathcal{J}\left(\mathbf{p}^{k}\right) \delta \mathbf{p}^{k+1}=\mathbf{b}\left(\mathbf{p}^{k}\right) \tag{2}
\end{equation*}
$$

Conjugate Gradient Method (CG)

Successive approximations to obtain a more accurate solution \times [2]

$$
\mathcal{A} \mathbf{x}=\mathbf{b}
$$

$$
\begin{array}{cc}
\mathbf{x}^{0}, \quad \text { initial guess } & \mathbf{r}^{k}=\mathbf{b}-\mathcal{A} \mathbf{x}^{k-1} \\
\min _{\mathbf{x}^{k} \in \kappa_{k}\left(\mathcal{A}, \mathbf{r}^{0}\right)}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathcal{A}}, & \|\mathbf{x}\|_{\mathcal{A}}=\sqrt{\mathbf{x}^{\top} \mathcal{A} \mathbf{x}}
\end{array}
$$

Convergence

$$
\left\|x-\mathbf{x}^{k}\right\|_{\mathcal{A}} \leq 2\left\|x-\mathbf{x}^{0}\right\|_{\mathcal{A}}\left(\frac{\sqrt{\kappa(\mathcal{A})}-1}{\sqrt{\kappa(\mathcal{A})}+1}\right)^{k}
$$

Preconditioning
Improve the spectrum of \mathcal{A}.

$$
\mathcal{M}^{-1} \mathcal{A} \mathbf{x}=\mathcal{M}^{-1} \mathbf{b}
$$

Convergence

$$
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathcal{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathcal{A}}\left(\frac{\sqrt{\kappa\left(\mathcal{M}^{-1} \mathcal{A}\right)}-1}{\sqrt{\kappa\left(\mathcal{M}^{-1} \mathcal{A}\right)}+1}\right)^{k}, \quad \kappa\left(\mathcal{M}^{-1} \mathcal{A}\right) \leq \kappa(\mathcal{A})
$$

Deflated PCG

DPCG history

- 1987 Nicolaides and Dostal First versions of DPCG
- 1999 Vuik, Meijerink, Segal

DPCG applied to reservoir simulations (Shell)

- 2004 Nabben, Vuik

Theory and porous media flow

- 2008 Nabben, Tang, Vuik, ...

Theory comparison: DPCG, MG and Domain Decomposition, bubbly flow

DPCG history

- 2008 Nabben Erlangga

Convection diffusion, Helmholtz, MLK method

- 2010 Jönsthövel, Vuik Mechanical problems, parallel computing
- 2014 Nabben, Sheikh, Lahaye, Vuik, Garcia MLK/ADEF method Helmholtz equation
- 2016 Diaz, Jansen, Vuik Porous media flow, Model Order Reduction (MOR)

DPCG

Deflation

$$
\begin{gathered}
\mathcal{P}=\mathcal{I}-\mathcal{A} \mathcal{Q}, \quad \mathcal{P} \in \mathbb{R}^{n \times n}, \quad \mathcal{Q} \in \mathbb{R}^{n \times n}, \\
\mathcal{Q}=\mathcal{Z E}^{-1} \mathcal{Z}^{T}, \quad \mathcal{Z} \in \mathbb{R}^{n \times k}, \quad \mathcal{E} \in \mathbb{R}^{k \times k}, \\
\left.\mathcal{E}=\mathcal{Z}^{T} \mathcal{A Z}(\text { Tang 2008, } 3]\right)
\end{gathered}
$$

Convergence
Deflated system

$$
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathcal{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathcal{A}}\left(\frac{\sqrt{\kappa_{\text {eff }}(\mathcal{P} \mathcal{A})}-1}{\sqrt{\kappa_{\text {eff }}(\mathcal{P A})}+1}\right)^{k}
$$

Deflated and preconditioned system

$$
\begin{gathered}
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathcal{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathcal{A}}\left(\frac{\sqrt{\kappa_{\text {eff }}\left(\mathcal{M}^{-1} \mathcal{P} \mathcal{A}\right)}-1}{\sqrt{\kappa_{\text {eff }}\left(\mathcal{M}^{-1} \mathcal{P A}\right)}+1}\right)^{k} \\
\kappa_{\text {eff }}\left(\mathcal{M}^{-1} \mathcal{P} \mathcal{A}\right) \leq \kappa_{\text {eff }}(\mathcal{P} \mathcal{A}) \leq \kappa(\mathcal{A})
\end{gathered}
$$

Deflation vectors

Recycling deflation (Clemens 2004, [4]).

$$
\mathcal{Z}=\left[\mathbf{x}^{1}, \mathrm{x}^{2}, \mathrm{x}^{q-1}\right],
$$

x^{i} 's are solutions of the system.
Multigrid and multilevel (Tang 2009, [5]).
The matrices \mathcal{Z} and \mathcal{Z}^{T} are the restriction and prolongation matrices of multigrid methods.

Subdomain deflation (Vuik 1999,[6]).

Deflation Vectors

Model Order Reduction (MOR)

Many modern mathematical models of real-life processes pose challenges when used in numerical simulations, due to complexity and large size.

Model order reduction aims to lower the computational complexity of such problems by a reduction of the model's associated state space dimension or degrees of freedom, an approximation to the original model is computed. (Vuik 2005, [7])

- Proper Orthogonal Decomposition (POD)
- Reduced Basis Method (RBM)
- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)

Deflation vectors

Proposal

Use solution of the system with diverse well configurations 'snapshots' as deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal Decomposition (POD).

Proper Orthogonal Decomposition (POD)

POD: find an 'optimal' basis for a given data set (Markovinović 2009 [8], Astrid 2011, [9])

- Get the snapshots

$$
\mathcal{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right] .
$$

- Form \mathcal{R}

$$
\mathcal{R}:=\frac{1}{m} \mathcal{X} \mathcal{X}^{T} \equiv \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

- Then

$$
\Phi=\left[\phi_{1}, \phi_{2}, \ldots . \phi_{l}\right] \in \mathbb{R}^{n \times I}
$$

are the / eigenvectors corresponding to the largest eigenvalues of \mathcal{R} satisfying:

$$
\frac{\sum_{j=1}^{l} \lambda_{j}}{\sum_{j=1}^{m} \lambda_{j}} \leq \alpha, \quad 0<\alpha \leq 1
$$

Lemma 1

Let $\mathcal{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and \mathbf{x} is a solution of:

$$
\begin{equation*}
\mathcal{A} \mathbf{x}=\mathbf{b} \tag{3}
\end{equation*}
$$

Let $\mathbf{x}_{i}, \mathbf{b}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$, be vectors linearly independent (I.i.) and

$$
\begin{equation*}
\mathcal{A} \mathbf{x}_{i}=\mathbf{b}_{i} \tag{4}
\end{equation*}
$$

The following equivalence holds

$$
\begin{equation*}
\mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i} \quad \Leftrightarrow \quad \mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i} \tag{5}
\end{equation*}
$$

Lemma 1 (proof)

$$
\begin{equation*}
\text { Proof } \Rightarrow \quad \mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i} \Rightarrow \mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i} \tag{6}
\end{equation*}
$$

Substituting \mathbf{x} from (6) into $\mathcal{A} \mathbf{x}=\mathbf{b}$ and using the linearity of \mathcal{A} we obtain:

$$
\mathcal{A} \mathbf{x}=\sum_{i=1}^{m} c_{i} \mathcal{A} \mathbf{x}_{i}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}=\mathbf{b} . \quad \text { Similarly for } \Leftarrow \quad \boxtimes
$$

Lemma 2

If the the deflation matrix \mathcal{Z} is constructed with a set of m vectors

$$
\mathcal{Z}=\left[\begin{array}{llll}
\mathbf{x}_{1} & \ldots & \ldots & \mathbf{x}_{m} \tag{7}
\end{array}\right]
$$

such that $\mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}$, with \mathbf{x}_{i} l.i., then the solution of system (3) is obtained with one iteration of DCG.

Lemma 2 (proof)

Proof.

The relation between $\hat{\mathbf{x}}$ and \mathbf{x} is given by [3]:

$$
\mathbf{x}=\mathcal{Q} \mathbf{b}+\mathcal{P}^{T} \hat{\mathbf{x}} .
$$

For the first term $\mathcal{Q} \mathbf{b}$, taking $\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}$ we have:

$$
\begin{aligned}
\mathcal{Q} \mathbf{b} & =\mathcal{Z} \mathcal{E}^{-1} \mathcal{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}\right)=\mathcal{Z}\left(\mathcal{Z}^{T} \mathcal{A} \mathcal{Z}\right)^{-1} \mathcal{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathcal{A} \mathbf{x}_{i}\right) \\
& =\mathcal{Z}\left(\mathcal{Z}^{T} \mathcal{A} \mathcal{Z}\right)^{-1} \mathcal{Z}^{T}\left(\mathcal{A} \mathbf{x}_{1} c_{1}+\ldots+\mathcal{A} \mathbf{x}_{m} c_{m}\right)=\mathcal{Z}\left(\mathcal{Z}^{T} \mathcal{A} \mathcal{Z}\right)^{-1}\left(\mathcal{Z}^{T} \mathcal{A Z}\right) \mathbf{c} \\
& =\mathcal{Z} \mathbf{c}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\ldots+c_{m} \mathbf{x}_{m}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}=\mathbf{x}
\end{aligned}
$$

Lemma 2 (proof)

Therefore,

$$
\begin{equation*}
\mathbf{x}=\mathcal{Q} \mathbf{b} \tag{8}
\end{equation*}
$$

is the solution to the original system.
For the second term of the equation, $\mathcal{P}^{T} \hat{\mathbf{x}}$, we compute the deflated solution $\hat{\mathbf{x}}$.

$$
\begin{aligned}
\mathcal{P} \mathcal{A} \hat{\mathbf{x}} & =\mathcal{P} \mathbf{b} \\
\mathcal{A} \mathcal{P}^{T} \hat{\mathbf{x}} & =(\mathcal{I}-\mathcal{A Q}) \mathbf{b} \\
\mathcal{A} \mathcal{P}^{T} \hat{\mathbf{x}} & =\mathbf{b}-\mathcal{A Q} \mathbf{b} \\
\mathcal{A} \mathcal{P}^{T} \hat{\mathbf{x}} & =\mathbf{b}-\mathcal{A} \mathbf{x}=0 \\
\mathcal{P}^{T} \hat{\mathbf{x}} & =0
\end{aligned}
$$

$$
\text { using } \mathcal{A P}^{\top}=\mathcal{P} \mathcal{A}[3] \text { and definition of } \mathcal{P}
$$

taking $\mathcal{Q} \mathbf{b}=\mathbf{x}$ from above, as \mathcal{A} is invertible.

Then we have obtained the solution

$$
\mathbf{x}=\mathcal{Q} \mathbf{b}+\mathcal{P}^{T} \hat{\mathbf{x}}=\mathcal{Q} \mathbf{b}
$$

in one step of DCG.

Numerical experiments

Heterogeneous permeability (Neumann and Dirichlet boundary conditions).

The experiments were performed for single-phase flow, with the following characteristics:

$$
n x=n y=64 \text { grid cells. }
$$

5 linearly independent snapshots.

System configuration								
Well pressures (bars)								
Snapshots								
	$W 1$	$W 2$	$W 3$	$W 4$	$P(y=0)$	$P(y=L y)$	$\frac{\partial P(x=0)}{\partial n}$	$\frac{\partial P(x=L x)}{\partial n}$
	-5	-5	+5	+5	0	3	0	0
	$W 1$	$W 2$	$W 3$	$W 4$	$P(y=0)$	$P(y=L y)$	$\frac{\partial P(x=0)}{\partial n}$	$\frac{\partial P(x=L x)}{\partial n}$
\mathbf{z}_{1}	-5	0	0	0	0	0	0	0
\mathbf{z}_{2}	0	-5	0	0	0	0	0	0
\mathbf{z}_{3}	0	0	-5	0	0	0	0	0
\mathbf{z}_{4}	0	0	0	-5	0	0	0	0
\mathbf{z}_{5}	0	0	0	0	0	3	0	0

Table : Table with the well configuration and boundary conditions of the system and the snapshots used for the Case 1.

Numerical experiments

Heterogeneous permeability (Neumann and Dirichlet boundary conditions).

Figure: Heterogeneous permeability, 4 wells.

$\kappa_{2}(\mathrm{mD})$	10^{-1}	10^{-2}	10^{-3}
ICCG	75	103	110
DICCG	1	1	1

Table : Number of iterations for different contrasts between the permeability of the layers for the ICCG and DICCG methods.

Numerical experiments

Heterogeneous permeability (Neumann boundary conditions).

The experiments were performed for single-phase flow, with the following characteristics:

$$
n x=n y=64 \text { grid cells. }
$$

Neumann boundary conditions.
15 snapshots, 4 linearly independent.
$\mathrm{W} 1=\mathrm{W} 2=\mathrm{W} 3=\mathrm{W} 4=-1$ bars,
$\mathrm{W} 5=+4$ bars.

Figure: Heterogeneous permeability layers.

$\sigma_{2}(\mathrm{mD})$	10^{-1}	10^{-2}	10^{-3}
ICCG^{2}	90	115	131
DICCG $_{4}$	1	1	1
DICCG $_{15}$	200^{*}	200^{*}	200^{*}
DICCG $_{\text {POD }_{4}}$	1	1	1

Table: Number of iterations.

Figure: Eigenvalues of the data snapshot correlation matrix.

Numerical experiments

SPE 10 model
$60 \times 220 \times 85$ grid cells.
Neumann boundary conditions.
15 snapshots, 4 linearly independent.
$\mathrm{W} 1=\mathrm{W} 2=\mathrm{W} 3=\mathrm{W} 4=-1$ bars, $\mathrm{W} 5=+4$ bars.

Method	Iterations
ICCG	1011
DICCG $_{15}$	2000^{*}
DICCG $_{4}$	2
DICCG POD $_{4}$	2

Table: Number of iterations for ICCG and DICCG methods.

Figure : SPE 10 benchmark, permeability field.

Numerical experiments

Compressible heterogeneous layered problem 35×35 grid cells.
Neumann boundary conditions.
$\mathrm{W} 1=\mathrm{W} 2=\mathrm{W} 3=\mathrm{W} 4=100$ bars, $\mathrm{W} 5=600$ bars.
Initial pressure 200 bars.
Contrast between permeability layers of $10^{1}, 10^{2}$ and 10^{3}.

Figure: Solution, contrast between permeability layers of 10^{1}.

Figure: Eigenvalues of the data snapshot correlation matrix, contrast between permeability layers of 10^{1}.

Numerical experiments

$1^{\text {st }}$ NR Iteration						
$\frac{\sigma_{2}}{\sigma_{1}}$	Total	Method	ICCG	DICCG	Total	\% of total
	ICCG(only)		Snapshots		ICCG+DICCG	ICCG(only)
10^{1}	780	DICCG_{10}	140	42	182	23
	780	$\mathrm{DICCG}_{P O D_{6}}$	140	84	224	29
10^{2}	624	DICCG_{10}	100	42	142	23
	624	$\mathrm{DICCG}_{P O D_{7}}$	100	42	142	23
10^{3}	364	DICCG_{10}	20	42	62	17
	364	$\mathrm{DICCG}_{P O D_{7}}$	20	42	62	17

Table: Comparison between the ICCC and DICCG methods of the average number of linear iterations for the first NR iteration for various contrast between permeability layers.

$2^{\text {nd }}$ NR Iteration							
$\frac{\sigma_{2}}{\sigma_{1}}$	Total ICCG(only)	Method	ICCG Snapshots	DICCG	Total ICCG+DICCG	\% of total ICCG(only)	
10^{1}	988	DICCG $_{10}$	180	78	258	26	
	988	DICCG $_{P O D_{6}}$	180	198	378	38	
10^{2}	832	DICCG $_{10}$	140	90	230	28	
	832	DICCG $_{\text {POD }_{7}}$	140	154	294	33	
10^{3}	884	DICCG $_{10}$	110	90	200	23	
	884	DICCG $_{P O D_{7}}$	110	150	260	29	

Table: Comparison between the ICCC and DICCG methods of the average number of linear iterations for the second NR iteration for various contrast between permeability layers.

Numerical experiments

Compressible SPE 10 problem $60 \times 220 \times 85$ grid cells.
Neumann boundary conditions.
$\mathrm{W} 1=\mathrm{W} 2=\mathrm{W} 3=\mathrm{W} 4=100$ bars, $\mathrm{W} 5=600$ bars.
Initial pressure 200 bars.
Contrast in permeability of 3×10^{7}.

Figure: Eigenvalues of the data snapshot correlation matrix.

Numerical experiments

$1^{\text {st }}$ NR Iteration						
$\begin{array}{c}\text { Total } \\ \text { ICCG(only) }\end{array}$	Method	$\begin{array}{c}\text { ICCG } \\ \text { Snapshots }\end{array}$	DICCG	$\begin{array}{c}\text { Total } \\ \text { ICCG+DICCG }\end{array}$	$\begin{array}{c}\% \text { of total } \\ \text { ICCG(only) }\end{array}$	
10173	DICCG $_{10}$	1770	1134	2904	28	
10173	DICCG $_{\text {POD }}^{4}$					

Table: Total number of linear iterations for the first NR iteration, full SPE 10 benchmark.

$2^{\text {nd }}$ NR Iteration						
$\begin{array}{c}\text { Total } \\ \text { ICCG(only) }\end{array}$	Method	$\begin{array}{c}\text { ICCG } \\ \text { Snapshots }\end{array}$	DICCG	$\begin{array}{c}\text { Total } \\ \text { ICCG+DICCG }\end{array}$	$\begin{array}{c}\% \text { of total } \\ \text { ICCG(only) }\end{array}$	
10231	DICCG $_{10}$	1830	200	2030	20	
10231	DICCG $_{\text {POD }}^{4}$					

Table: Total number of linear iterations for the second NR iteration, full SPE 10 benchmark.

Conclusions

- Solution is reached in few (1 or 2) iterations for the DICCG method in the incompressible case.
- A good choice of snapshots takes into account the boundary conditions of the problem.
- The number of iterations of the DICCG method does not depend on the contrast between the coefficients (Heterogeneous permeability example).
- The number of iterations of the ICCG method is reduced up to 80% with the DICCG method in the compressible case.
- Only a limited number of POD basis vectors is necessary to obtain a good speed-up. (for more info see $[10,11]$)

References

A systems description of flow through porous media.
Springer, 2013.
Y. Saad.

Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, 2nd edition, 2003.
J. Tang.

Two-Level Preconditioned Conjugate Gradient Methods with Applications to Bubbly Flow Problems.
PhD thesis, Delft University of Technology, 2008.
M. Clemens; M. Wilke; R. Schuhmann ; T. Weiland.

Subspace projection extrapolation scheme for transient field simulations.
IEEE Transactions on Magnetics, 40(2):934-937, 2004.
Jok Man Tang, Reinhard Nabben, Cornelis Vuik, and Yogi A Erlangga.
Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.
Journal of scientific computing, 39(3):340-370, 2009.
C. Vuik; A. Segal; and J. A. Meijerink.

An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients.

[^0]
References II

C. Vuik.

Deflation acceleration for CFD problems.
Linear algebra and model order reduction, Model order reduction, coupled problems and optimization from 19 Sep 2005 through 23 Sep 2005, 1:1-1, 2005.
R. Markovinović.

System-Theoretical Model Reduction for Reservoir Simulation and Optimization.
PhD thesis, Delft University of Technology, 2009.
P. Astrid; G. Papaioannou; J. C Vink; J.D. Jansen.

Pressure Preconditioning Using Proper Orthogonal Decomposition.
In 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, pages 21-23, January 2011.
G. B. Diaz Cortes, C. Vuik, and J. D. Jansen.

Physics-based pre-conditioners for large-scale subsurface flow simulation.
Report 16-3, Delft University of Technology, Delft Institute of Applied Mathematics, Delft, 2016.
G.B. Diaz Cortes, C. Vuik, and J.D. Jansen.

Physics-based pre-conditioners for large-scale subsurface flow simulation.
In J.D. Jansen, editor, ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery, August 29 September 1, 2016, pages 1-10, Houten, 2016. EAGE.
DOI: $10.3997 / 2214-4609.201601801$.

[^0]: Journal of Computational Physics, 152:385-403, 1999.

